

Contrôle de dureté des métaux et élastomères

Rugosimètres, Vidéo 2D Projecteurs de profils

Microscope loupes systèmes optiques

Mesure des forces Pesage

Instrumentation Mesure à main Niveaux électronqiues

Duromètre ROCKWELL BRINELL AT250 X

Manuel d'Utilisation

www.someco.fr

1	INTRO	DDUCTION	7
	1.1 Овј	ET DU MANUEL	7
	1.2 Org	GANISATION DU MANUEL	7
	1.3 ALE	RTES ET AVIS	7
	1.4 INFC	DRMATIONS GÉNÉRALES	7
2	OVER	VIEW	8
-			
	2.1 DON	NEES D'IDENTITE	8
	2.2 DES	SCRIPTION DE L'UNITE	9
	2.5 PIEC	LES PRINCIPALES	9 10
	2.4 CAR 2.5 DOT	ACTEMISTIQUES TECHNIQUES	10
3	AT250	D: FONCTIONNEMENT	. 12
Ŭ			
	3.1 FON	CTIONNEMENT STANDARD	12
	3.1.1	Essai automatique	12
4	MAUV	AISE UTILISATION	13
5	COMM	IENT DÉPLACER LE DUROMÉTRE	14
	E 1 Du		11
	5.1 DIM	ENSIONS ET POIDS DE L'EMBALLAGE	14 11
_	0.2 I OII		
6	EMBA	LLAGE	14
	6.1 Déb	BALLAGE ET RECYCLAGE DE L'EMBALLAGE	14
7	INSTA	LLATION	15
	7.1 Loc	ALISATION	15
	7.2 ENC	COMBREMENT	15
	7.3 INST	ALLATION	16
	7.3.1	Installation de la tête sur le bâti	16
	7.3.2 7.4 RAC	INSIGUIUUUT OU OUTOTHETE	18
_	- -		
8	DEMA	RRAGE	22
	8.1 INSP	PECTION PRÉVENTIVE	22
	8.2 L'ÉC	CRAN D'ACCUEIL ET COMMANDES	22
	8.3 PRE	MIER DÉMARRAGE ET PREMIER ARRÊT	22
	8.4 SEC	URITE – UTILISATION CORRECTE	22
9	DESC	RIPTION DU LOGICIEL	23
	9.1 COM	IMENT CONSULTER LE MANUEL LOGICIEL	23
	9.2 PAR	AMETRES OPERATEUR	25
	9.2.1	Régler la date	25
	9.2.2	Régler l'heure	25
	9.2.3	Langue du menu	25
	9.3 PAR	AMETRES FICHIER	26
	9.3.1	Suppression d'un fichier	20 20
	9.3.2	Créer un fichier	20 29
	9.3.4	Modifier un fichier	35
	9.3.5	Traitement des fichiers	36
	9.3.	5.1 Exporter les résultats	38
	9.3.	5.2 Imprimer sélection	39
	9.3.3 94 PAD	D.D. AIIICHAGE UU CAICUI STAUSUQUE	40 ⊿2
	9.4.1	Activer et definir le temps de charae	43
	9.4.2	Séparateur décimale	44
	9.4.3	Activer la fonction épaisseur minimale mesurable	44

	9.4.4	Introduire une calibration	47
	9.4.5	Reconnaître les modules profibus optionnels	48
ç	.5 PARA	AMÈTRES SÉCURITÉ	49
	9.5.1	Fonctions protégés par mot de passe	49
	9.5.2	Changer le mot de passe	50
10	INSTA	LLATION / REPLACEMENT DU PENETRATEUR	51
11	CHAN	GER LA CHARGE	53
12	ENTRI	ETIEN	56
1	2.1 E	NTRETIEN COURANT	56
1	2.2 Ei	NTRETIEN PÉRIODIQUE	56
	12.2.1	Contrôler la position de la sonde	56
13	GUIDE	DE DÉPANNAGE	59
14	EMBA	LLAGE ET TRANSPORT DU DUROMETRE	61
15	ANNEX	XE	62
1	5.1 U'	TILISATION DES ACCESSOIRES	62
	15.1.1	Anneau de verrouillage de la vis enclume	62
	15.1.2	Outil de démontage vis enclume	63
	15.1.3	Adaptateur enclume	63
1	5.2 R	OCKWELL TEST METHODE	65

Index des images et des tableaux

Tab. 7.1: Encombrement	15
Fig. 7.1: Vis du levier de charge	.16
Fig. 7.2: Vis pour blocage de la tête	16
Fig. 7.3: Tête avec les chevilles perpendiculaires à la fourche	.17
Fig. 7.4-7.4.b: Tête avec les chevilles sous la fourche	.17
Fig. 7.5: Fixation de la tête sur le bâti	17
Fig. 7.6: Connexion de la tête de mesure	18
Fig. 7.7: Duromètre AT250 avec bâti NX	18
Fig. 7.8: Duromètre AT250 avec bâti TX	19
Fig. 7.9: Duromètre AT250 avec bâti MUR	19
Fig. 7.10: Duromètre AT250 avec bâti CAR	20
Fig. 9.0: Écran d'introduction	23
Fig. 9.1: écran d'accueil	
Fig. 9.2: Paramètres Operateur	
Fig 93. Paramètre Fichier	.26
Fig. 9.4. clavier alphabétique	
Fig. 9.5: Clavier numérique	27
Fig. 9.6: Liste des fichiers	27
Fig. 9.7: Sélection fichier	28
Fig. 9.8: Supprimer fichier	28
Fig. 9.9. Liste des fichiers	29
Fig. 9.10: Nouveau paramètres fichier – page 1	29
Fig. 9.11: Nouveau paramétrage fichier – page 2	30
Fig. 9.12: clavier alphabétique	31
Fig. 9.12: Clavier numérique	32
Fig. 9.14: Liste des échelles disponibles	32
Fig. 9.15: Sélection de l'échelle	.04
Fig. 9.16: Paramètres définis	.00
Fig. 9.17: Liste des fichiers	.00
Fig. 0.18: Daramàtres fichiers	
Fig. 0.10: Liste des fichiers	
Fig. 9.19. Liste des memers	.30
Fig. 9.20. Elste des essais realises	.30
Fig. 9.21. Essais selectionites	.31
Fig. 9.22. Impression des fichiels expones	
Fig. 9.25. Impression d'un rapport	.39
Fig. 9.24. Ectan Statistiques	.40
Fig. 9.25: Menu parametres instrument	.42
Fig. 9.26: Clavier numerique.	.43
Fig. 9.27: Compte a rebours du temps de charge $11 ($.43
Fig. 9.28: Parametres instrument: epaisseur minimale mesurable (mm)	.44
Fig. 9.29: Parametres instrument: epaisseur minimale mesurable (pouces)	.45
Fig. 9.30: Epaisseur minimale mesurable pouces/mm	.45
Fig. 9.31: Epaisseur minimale mesurable pouces/mm	.46
Fig. 9.32: Ecran Parametres Instrument	.47
Fig. 9.33: clavier numérique	.47
Fig. 9.34: Ecran d'accueil – Calibration active	.48
Fig. 9.35: Clavier alphabétique	.49
Fig. 9.36: Menu paramètres sécurité	49
Fig. 9.37: Paramètres sécurité – Protection active	.50
Fig. 10.1: Serre-pièce, pénétrateur et buse du pénétrateur	.51
Fig. 10.2: Pénétrateur et buse du pénétrateur	.51
Fig. 10.3: Pénétrateur	.51
Fig. 10.4: Pénétrateur et broches de démontage du pénétrateur	52
Fig. 10.5: Remontage du nouveau pénétrateur	52
Fig. 11.1: Différents éléments permettant le choix de la charge	53
ERNST AT250 OPERATION MANUAL	5

Fig. 11.2: Goupille de blocage levé	53
Fig. 11.3: Tourner le volant	54
Fig. 11.4: Plaque en acier avec la ligne rouge et l'indication de charge	54
Fig. 11.5: Goupille de verrouillage avec étiquette de charge	55
Fig. 11.6: Goupille de verrouillage vers bas	55
Fig. 12.1: Sonde en position de repos	56
Fig. 12.2: Étalon sur la vis enclume	57
Fig. 12.3: Buse de pénétrateur en contact avec l'étalon	57
Fig. 12.4: Sonde en position de précharge	58
Fig. 15.1: Anneau de verrouillage de la vis enclume	62
Fig. 15.2: Anneau de verrouillage monté	62
Fig. 15.3-15.3.b: Outil de démontage vis enclume	63
Fig. 15.4: Base du bâti sans vis enclume et support du bâti	63
Fig. 15.5: Adaptateur enclume	63
Fig. 15.6-15.6.b: Utilisation de l'adaptateur pour enclume	64
Fig. 15.7: Exemple d'essai sans vis, avec enclume	64
Fig. 15.8: Rockwell test méthode	65
Fig. 15.9: Forme du pénétrateur diamant Rockwell	66
Tab. 15.1: échelles Rockwell standard	66
Tab. 15.2: échelles Rockwell superficiel	67

1 INTRODUCTION

1.1 **OBJET DU MANUEL**

- Ce manuel doit être considéré une partie permanente du votre duromètre et doit rester avec le duromètre à tout moment.
- Conservez le manuel à portée de main de l'opérateur et le protéger contre toute détérioration.
- Lisez attentivement ce manuel avant d'utiliser l'instrument et consultez ce manuel en cas de doute.
- Surtout les règles de sécurité doivent être respectées pour éviter des situations dangereuses et prévenir les risques potentiels de sécurité pour l'opérateur.
- Ce manuel fournit également des informations utiles pour une utilisation facile et pour l'entretien du duromètre.
- La liste des pièces de rechange ne fait pas partie de ce manuel, comme il est disponible pour les distributeurs autorisés seulement.

1.2 ORGANISATION DU MANUEL

- Ce manuel est divisé en chapitres et sous-chapitres.
- Sur la première page de chaque chapitre / sous-chapitre, un index numérique est donné avec une brève description du contenu du chapitre.
- Conversions: 1 kg = 9,8 N.

1.3 ALERTES ET AVIS

Pour mettre en évidence des informations importantes, ce manuel utilise les suivants alertes:

PRECAUTION - Précautions fournissent des informations très importantes qu'on doit lire très attentivement. Ne pas procéder jusqu'au vous avez compris l'information et vous avez respecté toutes les instructions. Le non-respect des précautions peut provoquer.

REMARQUES - Les remarques contiennent des informations susceptibles de clarifier des questions complexes. Remarques inclure des informations de fond utiles, ainsi que des rappels qui peuvent simplifier votre opération.

1.4 INFORMATIONS GENERALES

Objet: Manuel d'utilisation et d'entretien pour les duromètres ERNST séries AT250 Numéro de document: AT250.DOC.00.FRA.CI Date de sortie: Novembre 2, 2011

2 OVERVIEW

2.1 DONNÉES D'IDENTITÉ

L'étiquette du produit est appliqué sur derrière l'instrument et rapporte les informations suivantes:

- Modèle
- Numéro de série
- Date année de construction
- Marquage CE
- Étiquette principale puissance: tension (V), fréquence (50/60Hz) puissance (W)
- Informations sur le producteur peuvent être lues sur l'étiquette apposée sur le côté gauche du bâti.

Les données du producteur sont les suivantes:

C.I.S.A.M. SAS VIA MONTE TAGLIAFERRO 6 I-21056 INDUNO OLONA, VARESE ITALY PH.: +39 0332.200.216 FAX: +39 0332.202.623 E-MAIL: info@cisamitaly.com www.cisamitaly.com

2.2 DESCRIPTION DE L'UNITE

Le duromètre ERNST AT250 est un duromètre semi-automatique qui travaille selon la méthode d'essai Rockwell. Les charges d'essais vont de 60 à 187,5 kgf (588 à 1837, N) pour les tests Rockwell et de 10 à 45 kgf (98 à 441 N) pour les tests Rockwell Superficiel.

Le duromètre AT250 a été conçu pour répondre aux différentes exigences de l'essai de dureté, en prenant particulièrement en compte les exigences des différents traitements thermiques, des formes et des dimensions des pièces et échantillons, et en tenant compte de la nécessité de certifier le procédé d'essai.

Le duromètre ERNST AT250 est équipé d'un logiciel spécialement conçu pour les essais de dureté, le traitement et la présentation des données.

Le duromètre ERNST AT250 permet d'imprimer un rapport d'essais ou d'exporter les données vers des périphériques externes grâce à l'interface USB intégrée ou par une autre interface sur demande, telles que Ethernet, Profibus, RS232, RS485, (proposée en option).

Avec le duromètre Ernst AT250 un seul geste du levier permet d'effectuer le cycle de test complet, en appliquant à la fois la charge et la précharge. La valeur de la dureté est affichée deux secondes sur l'écran tactile couleur, et cela, sans influence de l'opérateur.

Grâce au serre-pièce, des pièces de formes très variées, même avec des porte-à-faux important, peuvent être bridées fermement, sans support ou outillage additionnels. et sans affecter les résultats de l'essai.

Le duromètre ERNST AT250 emploie des composants de haute qualité, qui assurent la durée et la fiabilité même dans les environnements les plus difficiles

2.3 PIÈCES PRINCIPALES

L'instrument se compose de:

• Bâti

Il soutient la tête électronique et héberge le mécanisme d'application de la charge.

Différents modèles sont disponibles pour des solutions très polyvalentes.

La capacité permet de mesurer des pièces ayant un encombrement important.

Pénétrateur

Les pénétrateur appropriés doivent être choisis en fonction de l'échelle de dureté utilisée.

Le pénétrateur devant être utilisé est affiché à l'écran par le programme, limitant ainsi le risque d'erreur. • Ensemble vis et enclumes interchangeables

La vis de l'enclume est réglable en hauteur pour ajuster la hauteur utile à la dimension de la pièce.

Pour tester pièces de forme complexe, des enclumes spéciales sont disponibles sur demande. • Électronique d'alimentation

Elle est installée dans le carter métallique de la tête de mesure et comprend un câble d'alimentation avec interrupteur et fusibles, et l'alimentation.

• Électronique opérationnelle

Elle est également installée dans le carter métallique de la tête de mesure et elle inclut la carte électronique pour le fonctionnement du duromètre. Grâce à cette carte, les signaux de la sonde et du capteur de précharge sont traités, elle gère également le calcul du résultat de dureté, le stockage de données et l'exportation de données. La carte électronique est composé de:

Processeur 8 core

Cartes micro SD mémoire flash où les fichiers et les paramètres sont stockés.

Port USB 2.0 externe pour l'exportation de données vers la clé USB.

Port USB 2.0 externe pour imprimer les données.

Un connecteur réservé au fabricant

Deux modules supplémentaires pour le fonctionnement des différentes interfaces (sur demande).

Port interne pour la connexion du display.

• Écran tactile

Il est situé en façade de la tête de mesure et permet l'accès à toutes les fonctions. Il se compose d'un panneau tactile rétro-éclairé LED ayant 800x480 de résolution. La carte micro SD de mémoire flash permet de gérer les images et les fichiers de texte.

La communication avec l'électronique opérationnelle est assurée par l'un des ports série.

• Accessoires

Comprend toutes les pièces telles que pénétrateurs, enclumes et étalons de dureté, nécessaires pour effectuer l'essai de dureté correctement.

2.4 CARACTÉRISTIQUES TECHNIQUES

Méthode d'essai

Le duromètre AT250 fonctionne selon la méthode d'essai Rockwell.

Le duromètre AT250 peut également être utilisé avec des pénétrateurs et des charges Brinell.

D'autres échelles de dureté sont disponibles sur demande.

Gamme de charges

Rockwell				Rockwell Superficiel				
Rockwell		Brinell		Rockwell		Brinell		
kgf N		Kgf	Ν	Kgf	Ν	kg	Ν	
60	588	62,5	612,5	15	147	10	98	
100	980	125	1225	30	294	15,6	152,9	
150	1470	187,5	1837,5	45	441	31,2	305,8	

Tab. 2.1: Gamme des charges

Précharge : 10 kgf (98 N) pour l'exécution Rockwell Précharge : 3 kgf (29,4 N) pour l'exécution Rockwell Superficiel

Capacité du bâti

La capacité du bâti est différente selon le modèle choisi.

Modèle du bâti	Capacité (mm)	Profondeur (mm)
NX	215	220
TX	270 (420 sans ensemble vis)	220
MUR	550 (sans ensemble vis)	300
CAR	750	300

Tab. 2.2: Capacité du bâti

Le bâti "T", permet d'adapter la hauteur de colonnes, pour obtenir des capacités augmentées de 100, 300 ou 500 mm.

Échelles de dureté disponibles

- **Pour l'exécution Rockwell** Rockwell: HRA, HRB, HRC, HRD, HRF, HRG Brinell: HB30, HB10, HB5, kp/mm² e N/mm²
- Pour l'exécution Rockwell Superficiel Rockwell: HR15N, HR30N, HR45N, HR15T, HR30T, HR45T, HR15W, HR30W, HR45W Brinell: HB2,5 e HB5.

REMARQUE - les échelles de dureté supplémentaires, comme Vickers, Shore pour les aciers ou autres, peuvent être fournis sur demande.

Pénétrateurs

Rockwell: diamante conique, bille $\varphi = 1/16$ ", $\varphi = 1/8$ ", $\varphi = 1/4$ " Brinell: bille $\varphi = 2,5$ mm, $\varphi = 5$ mm

REMARQUE – quelques-uns des pénétrateurs ci-dessus sont optionnels et peuvent être fournis sur demande.

Alimentation: 100-240Vac 50-60Hz 100W

2.5 DOTATION STANDARD

Le duromètre AT250 est livré avec les accessoires et la documentation technique suivants :

Accessoires

Les accessoires sont contenus dans un tiroir dans la base du bâti :

- diamante conique
- φ = pénétrateur a bille 1/16"
- φ = pénétrateur a bille 2,5 mm (seulement pour l'exécution Rockwell)
- Φ =enclume plate 60 mm
- Φ =enclume plate 10 mm
- enclume V grande
- enclume V petite
- jeu de clés "Allen"
- housse en vinyle
- bloc étalon Rockwell
- bloc étalon Brinell (seulement pour l'exécution Rockwell)
- billes de rechange
- fusibles de rechange
- câble d'alimentation
- outil de blocage de la vis pour enclume (seulement pour bâtis NX et TX)
- adaptateur enclume (seulement pour bâtis TX et CAR)

REMARQUE – consulter le chapitre 15.1 pour plus d'information sur l'utilisation des bâtis.

Les accessoires optionnels suivants sont disponibles pour compléter la dotation standard:

- Meuble support
- Imprimante
- Câble imprimante
- Φ =enclume V 200 mm
- $\Phi = 200 \text{ mm}$ enclume plate
- φ =pénétrateur à bille 1/8"
- φ =pénétrateur à bille 1/4"
- $\phi = p \acute{e} n \acute{e} t rateur à bille 5 mm$

REMARQUE - notre personnel technique est disponible pour l'étude des applications dédiées, comme enclumes, échelles spéciales et pénétrateurs.

Documentation technique

La documentation technique comprend:

- Manuel d'utilisation et d'entretien
- Certificat d'étalonnage usine

Le manuel devrait être considéré comme une partie intégrante de votre duromètre et doit rester en permanence à proximité de l'instrument.

Outre les résultats de dureté, le certificat d'étalonnage précise l'année de construction et le numéro de série du duromètre, ainsi que les blocs étalons utilisés pour la calibration.

3 AT250: FONCTIONNEMENT

3.1 FONCTIONNEMENT STANDARD

Le duromètre AT250 a été conçu pour surmonter certains inconvénients de la méthode d'essai Rockwell et rendre le procède d'essai plus facile et plus rapide.

Le modèle AT250 emploi le référencement de la surface d'essai, qui est une solution unique au problème de la déformation de l'échantillon. Le pénétrateur est entouré par une buse qui définie la position du pénétrateur par rapport à la surface d'essai lorsque la précharge a été appliquée. Si l'échantillon dévie pendant l'application de la charge, la buse se déplace avec la surface d'essai pour compenser en soutenant la position de référence précise à la surface d'essai. Les résultats restent précis et fiables.

Pour des essais corrects, la prescription de la norme EN ISO 6508-1 est valable.

La buse de serrage permet de serrer des pièces en porte-à-faux et des échantillons encombrants en toute sécurité. Il est également possible d'effectuer des séries d'essais en plaçant simplement les échantillons sur l'enclume, sans les bloquer.

La rapidité d'exécution des essais, est la caractéristique principale du duromètre AT250: il suffit de basculer le levier pour effectuer le cycle d'essai complet, application à la fois la précharge et la charge et affichage du résultat dans les deux secondes, sans influence de l'opérateur. Avec des échelles appropriées, il est possible de tester toutes sortes de métaux.

3.1.1 ESSAI AUTOMATIQUE

Le fonctionnement est le même que le standard:

- Appuyez sur l'interrupteur principal pour commencer l'essai
- Tournez la vis pour porter l'enclume à la proximité du pénétrateur.
- Si vous ne voulez pas serrer l'échantillon avec la buse de serrage, il suffit de le placer sur une enclume de forme adaptée et de s'assurer qu'il est stable.
- Abaissez le levier en douceur jusqu'à application de la précharge et la charge.
- Gardez le levier en position basse durant le temps d'application de charge.
- Relâchez le levier. Le résultat est affiché.

ATTENTION - Avant le test assurez-vous que vous employez le pénétrateur adapté à l'essai et que l'échelle de dureté appropriée et le temps d'application de charge ont été correctement paramétrés.

4 MAUVAISE UTILISATION

Ce manuel doit être lu attentivement d'utiliser l'instrument.

Le duromètre ERNST AT250 ne peut pas être utilisé à des fins non conformes aux spécifications du produit. En cas de doute, vérifiez dans ce manuel la procédure d'utilisation correcte ou appeler notre service technique :

ph:. +39 0332.200.216 Fax: +39 0332.202.623 e-mail: info@cisamitaly.com

Une mauvaise utilisation ou un entretien inadéquat peuvent endommager le duromètre et les accessoires ainsi que conduire à des situations dangereuses. Lorsque le duromètre est utilisé en combinaison avec des appareils externes, lisez attentivement les manuels respectifs. En aucun cas, le fabricant ne pourra être tenu pour responsable des dommages directs, indirects, spécifiques, fortuits ou consécutifs, causés par un usage impropre ou par des comportements dangereux.

5 COMMENT DÉPLACER LE DUROMÉTRE

5.1 DIMENSIONS ET POIDS DE L'EMBALLAGE

Le duromètre ERNST AT250 est livré dans un emballage contenant aussi les accessoires et la documentation. Les poids et dimensions de l'emballage peuvent varier en fonction du fait que le duromètre peut être fourni avec ou sans bâti et selon le type de bâti choisi.

5.2 POINTS LEVAGE, TRANSPORT

Le déplacement et la manutention de l'unité doivent être faits avec soin, en veillant à respecter le sens des flèches marquées sur l'emballage. Éviter tout choc qui pourrait endommager le duromètre.

Enlever tous les matériaux d'emballage et suivre ces étapes pour déplacer l'unité:

- Si la tête de mesure est séparée du meuble support, soulever et le déplacer avec des sangles et des appareils de levage appropriés.

- Si la tête de mesure est installée sur le meuble support, avant de déplacer l'appareil, dévisser la vis de l'enclume complètement et lever le bâti en utilisant des sangles et des appareils de levage appropriés.

ATTENTION - Le duromètre n'est pas fixé au meuble support, mais il est simplement posé dessus. Le meuble doit être levé avec des chariots appropriés en le soulevant par le bas.

En raison du poids important de l'appareil, ne pas essayer de le soulever ou de le déplacer sans aide.

6 EMBALLAGE

6.1 DÉBALLAGE ET RECYCLAGE DE L'EMBALLAGE

Retirer tous les matériaux d'emballage et vérifier l'intégrité du matériel.

Voir le chapitre «2.5 Ce qui est inclus « et vérifier le bordereau d'expédition.

Retirer les pièces de protection, comme les planches de bois et de pièces plastique, couper les ceintures d'emballage et prendre soin d'éviter d'endommager l'appareil. Il est recommandé de stocker les emballages dans un endroit approprié et de les conserver pour un usage futur. Si nécessaire, éliminer les déchets d'emballage en vous conformant à la législation en vigueur sur le recyclage des déchets.

REMARQUES - Si vous n'allez pas utiliser le duromètre immédiatement, stockez le dans un endroit propre et sec. Il ne doit pas être exposé à la pluie, à des gaz liquides ou nocifs. Conserver le à une température ambiante comprise entre 5 et 40°C et protégez le de l'humidité et de la poussière.

7 INSTALLATION

7.1 LOCALISATION

Le duromètre ERNST AT250 est un instrument de laboratoire et il devrait être placé dans une pièce ayant les exigences suivantes:

- faible pourcentage de poussière dans l'air
- faible degré d'humidité
- température entre 5-40 ° C
- si l'emplacement choisi ne répond pas à ces exigences, un climatiseur ou une bonne aération doivent être mis en place.
- absence de vibrations.

Pour réduire les vibrations au minimum, ne pas installer le duromètre près d'un appareil source de vibrations, évitez de lancer cycle d'essai lorsque des manipulations sont en cours à proximité. Évitez d'appuyer à l'instrument ou sur le meuble support pendant les tests.

La salle doit être suffisamment spacieuse pour facilement manipuler et déplacer l'appareil pendant l'installation et les échantillons pendant les essais. Une salle vaste permet également un nettoyage et un entretien plus facile du duromètre. Voir paragraphe suivant pour plus de détails sur les dimensions globales.

Le plancher doit être capable de supporter le poids du duromètre (voir tableau 7.1) et des pièces d'essai.

7.2 ENCOMBREMENT

Le duromètre ERNST AT250 peut être achetés avec ou sans le meuble support.

Dans tous les cas, un espace approprié devrait être disponible pour permettre d'approcher l'instrument de face, latéralement et par l'arrière.

Encombrement

Le duromètre ERNST AT250 a les dimensions suivantes dans la configuration standard:

Bâti modèle	Largeur (mm)	Hauteur (mm)	Profondeur (mm)	Poids (kg)
NX	200	620	520	53
TX	240	857	560	87
MUR	200	1050	700	90
CAR	250	1350	970	140
BANCO				

 Tab. 7.1: Encombrement

7.3 INSTALLATION

Assurez-vous que l'emplacement est conforme à la susdite exigence. Le duromètre peut venir avec ou sans le meuble support en fonction de votre champ d'application. Suivre les instructions pour une installation correcte de l'instrument.

7.3.1 INSTALLATION DE LA TETE SUR LE BATI

La tête de mesure est livrée séparée du bâti.

Pour installer la tête suivre les étapes suivantes :

• Desserrer les vis qui fixent le levier à droite du bâti et d'ajuster le levier à la hauteur désirée. Ensuite, bloquer manuellement les vis.

Fig. 7.1: Vis du levier de charge

• Desserrer les vis à la droite du bâti – un demi tour suffit

Fig. 7.2: Vis pour blocage de la tête

• Insérer la tête dans le support en gardant une rotation, de sorte que les chevilles d'application de la charge soient perpendiculaires à la fourche d'application de la charge.

Fig. 7.3: Tête avec les chevilles perpendiculaires à la fourche

• Soulever la fourche et faire tourner la tête de telle sorte que les deux chevilles soient positionnées sous le creux d'hébergement de la fourche.

Fig. 7.4-7.4.b: Tête avec les chevilles sous la fourche

• Abaisser le levier d'application de la charge et le garder en position "basse" tout en serrant la vis.

Fig. 7.5: Fixation de la tête sur le bâti

- Brancher le connecteur de précharge situé à l'arrière de la tête sur le boîtier électronique
- Brancher le cordon d'alimentation qui vient du bâti sur la boîte électronique

Fig. 7.6: Connexion de la tête de mesure

7.3.2 INSTALLATION DU DUROMETRE

• Duromètre ERNST AT250 avec bâti NX

Fig. 7.7: Duromètre AT250 avec bâti NX

Relever totalement la vis de l'enclume afin qu'elle ne dépasse pas du fond du bâti.

Placer ensuite le duromètre en prenant soin que la vis coïncide avec le trou du meuble support. Mettre le duromètre de niveau.

• Duromètre ERNST AT250 avec bâti TX

Relever totalement la vis de l'enclume afin qu'elle ne dépasse pas du fond du bâti.

Placer ensuite le duromètre en prenant soin que la vis coïncide avec le trou dans le meuble support. Mettre le duromètre de niveau.

Fig. 7.8: Duromètre AT250 avec bâti TX

• Duromètre ERNST AT250 avec bâti MUR

Fig. 7.9: Duromètre AT250 avec bâti MUR

Fixer les deux plaques d'ancrage au mur. Le bâti doit être placé à une hauteur convenable pour permettre le passage des pièces qui doivent être testées.

• Duromètre ERNST AT250 avec bâti CAR

Fig. 7.10: Duromètre AT250 avec bâti CAR

Le bâti CAR est un bâti de sol, mobile. Appuyer sur le levier arrière vers le bas pour incliner le bâti et soutenir les colonnes pour répartir la charge. Pousser le bâti pour le déplacer.

7.4 RACCORDEMENT AU RÉSEAU ÉLECTRIQUE

ATTENTION – les opérations décrites ci-dessous doivent uniquement être effectuées par du personnel qualifié.

Tous les duromètres ERNST subissent de nombreux tests avant la livraison.

Avant la connexion au réseau électrique, assurez-vous que la tension correspond à celle sur l'étiquette CE, située à l'arrière du testeur.

L'interrupteur principal situé sur le côté arrière du boîtier électronique doit être sur la position zéro.

Le cordon d'alimentation est équipé avec une prise Schuko. En cas de besoin, seul le personnel qualifié peut remplacer la prise.

Connecter le duromètre au système électrique grâce à la prise appropriée.

Pour préserver et assurer une longévité importante aux composants électriques, il est conseillé d'équiper le duromètre avec une alimentation stabilisée (oscillateur).

En particulier, l'utilisation d'un oscillateur est obligatoire, lorsque l'alimentation électrique subit des oscillations supérieures à \pm 10% de la valeur nominale.

Fournir un système de sécurité adapté à l'interruption d'alimentation en cas d'urgence, tenant compte que le duromètre est équipé avec conducteur de terre.

8 DÉMARRAGE

8.1 INSPECTION PRÉVENTIVE

ATTENTION – s'assurer que les contrôles de sécurité décrits ci-dessus ont été réalisés et la procédure respectée.

S'assurer que chaque partie de l'emballage a été retirée.

S'assurer que le duromètre a été posé parfaitement à plat.

S'assurer que le duromètre peut-être éteint et que l'interrupteur d'arrêt est accessible en cas d'urgence avant d'alimenter le duromètre. Vérifier que le cordon d'alimentation est correctement connecté.

8.2 L'ÉCRAN D'ACCUEIL ET COMMANDES

Utiliser l'écran tactile pour faire fonctionner le duromètre.

L'interrupteur principal est situé à l'arrière du boîtier électronique.

L'échantillon doit être positionné manuellement en ajustant la vis de l'enclume.

La charge est appliquée manuellement par le levier de chargement.

Le duromètre peut s'interfacer avec des périphériques externes grâce à deux ports USB situés à l'arrière du boîtier électronique. En particulier, le port USB supérieur est prévu pour connecter une imprimante, tandis que le port inférieur est destiné à la clé USB.

Possibilités d'interfaces supplémentaires qui peuvent être fournies sur demande, par l'ajout de deux modules à l'arrière du boîtier électronique.

8.3 PREMIER DÉMARRAGE ET PREMIER ARRÊT

Allumer l'interrupteur principal.

Après quelques secondes, l'écran d'accueil s'affiche. Grâce à l'écran d'accueil, il est possible de consulter chaque fonction du programme.

Remettre l'interrupteur principal sur la position zéro, pour arrêter le duromètre.

8.4 SÉCURITÉ – UTILISATION CORRECTE

ATTENTION : Ne pas utiliser le duromètre à des fins non conformes aux spécifications du produit. Ne pas toucher le duromètre pendant le cycle d'essai.

Si vous avez besoin de mesurer des pièces lourdes ou très grandes, les manipuler avec soin et en utilisant des équipements de manutention appropriés.

Lors de la mise en place de l'échantillon, attention à prendre les dispositions nécessaires pour éviter d'endommager le pénétrateur.

Stocker les pénétrateurs qui ne sont pas utilisés dans les contenants appropriés.

Respecter les règles de sécurité et les instructions de fonctionnement lors de l'utilisation du duromètre.

9 DESCRIPTION DU LOGICIEL

Il est conseillé de lire et comprendre ces instructions avant d'utiliser le duromètre.

9.1 COMMENT CONSULTER LE MANUEL LOGICIEL

Le logiciel du duromètre ERNST AT250 est un programme intuitif et convivial. Chaque touche permet d'accéder à une fonction.

Lors du démarrage du programme, l'ouverture de l'écran apparaît. Ensuite, l'écran d'introduction à la version du logiciel est affiché.

Fig. 9.0: Écran d'introduction

Ensuite l'écran d'accueil apparaît.

L'écran est divisé en trois parties principales:

- La partie supérieure donne des informations sur le fichier, la date active et l'heure.
- Dans la partie centrale, le résultat de dureté et les informations pertinentes sont affichées.
- La partie inférieure contient les touches de fonction.

Fig. 9.1: écran d'accueil

Les fonctions du programme sont réparties en 4 groupes, définis ci-dessous :

- Paramètres Opérateur
- Paramètres Fichiers
- Paramètres Instrument
- Paramètres Sécurité

Par la fonction Paramètres Opérateur, il est possible de définir date, heure et langue.

Par la fonction **Paramètres Fichiers**, les environnements d'exploitation différents peuvent être créés pour stocker et gérer les résultats.

Par la fonction Paramètres Instrument, la méthode d'essai peut être réglée.

Par la fonction **Paramètres Sécurité**, il est possible de protéger le programme, par un mot de passe, d'opération non autorisée.

9.2 PARAMETRES OPERATEUR

Cette fonction permet de régler la date, l'heure et langue.

A partir de l'écran d'accueil, appuyer sur la touche Paramètres Opérateur pour afficher le menu correspondant.

Fig. 9.2: Paramètres Operateur

9.2.1 RÉGLER LA DATE

La date est affichée dans le format suivant: JJ / MM / AA. Pour modifier un paramètre, il suffit de toucher et appuyez sur les flèches <> pour le changer. La date fixée est affichée à droite, en haut de l'écran. Appuyer sur CONFIRMER pour revenir à l'écran d'accueil.

9.2.2 RÉGLER L'HEURE

L'heure est affichée dans le format suivant: HH / MM / SS.

Pour modifier un paramètre, il suffit de toucher et appuyez sur les flèches < > pour le changer. Appuyer sur CONFIRMER pour revenir à l'écran d'accueil.

9.2.3 LANGUE DU MENU

Appuyer sur les flèches <> pour parcourir les langues de menu disponibles. Pour sélectionner celle désirée, il suffit de toucher l'icône et d'appuyer sur Valider pour retourner au menu principal. Ensuite, éteignez et allumez le duromètre pour activer la langue désirée.

9.3 PARAMETRES FICHIERS

Cette fonction permet de personnaliser le mode de fonctionnement et de créer des profils de travail. Le profil de travail est appelé fichier.

Depuis l'écran d'accueil, sélectionner Paramètre Fichier pour afficher le menu correspondant.

Fig. 9.3: Paramètre Fichier

9.3.1 Sélection des fichiers

Une liste des fichiers disponibles (profil) est affichée dans le milieu de l'écran.

Utiliser les flèches < > pour rechercher le fichier désiré.

Vous pouvez également sélectionner la touche **FILE SEARCH** et entrer quelques caractères du nom de fichier pour la recherche.

Après avoir sélectionné la touche FILE SEARCH, l'écran affiche un clavier comme celui ci-dessous:

TEST-HRB				
150.0 Kgf	Diama	Int ROCKWELI	L 1(0 - Nov - 2011
HRC	40.0 45	.0 55.0	60.0	16:58:58
				ESC
contract, contract, o				
OW	ER	ТҮІ	U	ΟΡ
				A STREET
A S	DF	G H	JK	L
. 7	VC	VD		
A Z	XC	VD		
122 #//)	c	DACE		esc
125 #/(.)	2	TACE		

Fig. 9.4: clavier alphabétique

Sélectionnez la clé 123 #/(.) pour passer au clavier numérique:

15	0.0 Kgf	Diamant ROCKWELL						10 - Nov - 2011		11
HF	RC	40	0.0	45.0	55.0	60	0.0		16:59:0	37
									E	SC
	0 1	2	3	4	5	6	7	8	9	
			,		-	1	#			
			()]]			2	
	ABC			SP/	ACE			+	esc	

Fig. 9.5: Clavier numérique

Sélectionner la touche ABC pour passer à un clavier alphabétique.

Utiliser le clavier pour entrer un ou plusieurs caractères du nom du fichier que vous souhaitez rechercher, puis

appuyez sur *pour lancer la recherche.*

Une liste des fichiers contenant les caractères recherchés s'affiche.

Pour voir la liste complète de tous les fichiers disponibles, sélectionnez la touche FILE SEARCH.

Fig. 9.6: Liste des fichiers

Toucher le fichier désiré pour le sélectionner. L'écran suivant s'affiche:

Fig. 9.7: Sélection fichier

Appuyer sur la touche située à droite pour valider le choix du fichier sélectionné (profil). Le programme est prêt pour fonctionner avec le fichier sélectionné et l'écran d'accueil apparaît.

9.3.2 SUPPRESSION D'UN FICHIER

Sélectionner le fichier à supprimer et appuyer sur pour le supprimer. Ensuite, l'écran suivant apparaît: appuyer sur **OUI** pour supprimer ou **NON** pour revenir à l'écran précédent.

TES	T-HRC				No.	Charles and	
150.0	Kgf	D	iamant R	OCKWEL	L	10 - Nov	- 2011
HRC		40.0	45.0	55.0	60.0	16	:59:28
Fichier a	archive						ESC
	•	TEAT	1100				
1	• 📓	Vo	uler vous	r?		1	
	•	No	on	0	ui		
	Nouveau Fichier	R	Edition Fichler		Archive Essais	Recl Fit	herche chier

Fig. 9.8: Supprimer fichier

9.3.3 CRÉER UN FICHIER

Depuis l'écran d'accueil, appuyer sur EDITION FICHIER pour afficher la liste des fichiers disponibles.

TES	ST-HRC							
150.0	Kgf		۵)iamant R	OCKWEL	-L	10 - Nov	/ - 2011
HRC			40.0	45.0	55.0	60.0	1	6:58:42
Fichier a	archive							ESC
	•	X	TEST	-HRC				
1	•		TEST	-HB30				
	•	X	TEST	-HRB				-
Nouveau Fichier			Edition Fichier		Archive Essais	Re F	cherche Fichier	

Fig. 9.9: Liste des fichiers

Pour créer un nouveau fichier, sélectionner "Nouveau fichier", l'écran suivant apparaît:

TES	ST-HRC						
150.0	Kgf		Diamant I	ROCKWELL		10 - Nov	- 2011
HRC		40.0	45.0	55.0	60.0	1	6:59:46
Paramé	tres fichiers						ESC
	Nom fichier						
	Type fichier						
/							
					-		
	Correction		Ø	mm			
	N° séquenc			1			
0	Effacer					Confirmer	
	SUM STANSISTER STATE						

Fig. 9.10: Nouveau paramètres fichier – page 1

Appuyer sur > pour afficher les champs encore disponibles, comme illustré par l'image suivante (appuyez sur < pour revenir à la page précédente):

150.0	Kgf		Diamant R	OCKWEI	_L	10 - Nov - 2011	
HRC		40.0	45.0	55.0	60.0		6:59:53
Paramét	tres fichiers						ESC
	LL	L	In the second second	н	нн		
	Description						-
/							
	Description						
	Description						
-							
	Effacer						

Fig. 9.11: Nouveau paramétrage fichier – page 2

Les champs suivants peuvent être personnalisés:

- Nom Fichier: doive être obligatoire rempli
- Type Fichier: permet d'ajouter une description du fichier, au choix
- Échelle: est fondamentale afin de personnaliser le fichier et doit être obligatoire rempli avec le nom d'échelle de dureté.
- **Conversion:** permet d'obtenir la conversion du résultat de dureté dans une autre échelle. Ce champ n'est pas obligatoire.
- **Correction**: lors de tests sur des échantillons cylindriques, il est possible d'entrer le diamètre pour l'application du facteur de correction cylindrique comme prescrit par les normes. Ce champ n'est pas obligatoire.

Remarque - Le diamètre apparaît en mm ou en pouces selon la configuration de l'instrument précisée au chapitre 9.4.3.

- N° séquence: permet d'entrer le numéro de départ, après quoi le numéro de séquence est incrémenté à chaque nouveau test effectué. Par défaut, la numération commence à 1.
- Logo fichier: permet d'assigner un icône de couleur à chaque fichier. L'opérateur peut choisir entre 6 couleurs. Ce n'est pas un paramètre obligatoire.
- LL, L, H et HH: permet de définir les limites de tolérance et de classer le résultat du test en conséquence (par des bandes de couleur qui apparaissent sur l'écran). Ce n'est pas un paramètre obligatoire.

Remarque – les tolérances sont classées par les sigles suivants: LL = valeur très faible L = faible valeur H = haute valeur HH = valeur très élevée

• **DESCRIPTION 1, 2, 3, 4 et 5**: permet d'ajouter des informations supplémentaires sur le fichier. Ce n'est pas un paramètre obligatoire.

Il suffit de toucher le champ blanc à droite, pour fixer le paramètre désiré

Pour le réglage des paramètres suivants: nom de fichier, type de fichier, description 1, 2, 3, 4, 5, un clavier apparaît comme celui ci-dessous:

Fig. 9.12: clavier alphabétique

Appuyer 123 #/(.) pour passer au clavier numérique et vice-versa.

Utiliser le clavier pour saisir les informations souhaitées. Ensuite, appuyer sur *mour confirmer*.

Pour les paramètres: Nombre séquence, Correction, LL, L, H et HH, un pavé numérique apparaît comme celui ci-dessous. Entrer la valeur souhaitée, puis appuyer sur pour confirmer.

Fig. 9.13: Clavier numérique

Pour le paramétrage de l'échelle, l'écran suivant apparaît:

TES	T-HRC							
150.0	Kgf			Diamant I	ROCKWE	LL	10 - Nov	- 2011
HRC			40.0	45.0	55.0	60.0	1	7:00:08
Sélection	n échel	le						ESC
	•	HRA		~	60.0 Kgf			
1	•	HRD		•	100.0 Kgf			
	•	HRC		V	150.0 Kgf			/
	•	HRF		۲	60.0 C	0 1/16 mm		
		cer					Confirmer	0

Fig. 9.14: Liste des échelles disponibles

Utiliser les flèches < > pour naviguer dans la liste des échelles disponibles. Comme illustré ci-dessus, le type de pénétrateur et la charge d'essai à utiliser sont précisés à côté du nom de l'échelle. Toucher le nom de l'échelle souhaité pour la confirmer.

150.0 Kgf			Diamant R	ockwi	10 - Nov -	2011	
HRC		40.0	45.0	55.0	60.0	17:	00:18
Sélection	n échel	le					ESC
	•	HRB	۲	100.0 Kgf	Ø 1/16 mm		
1	•	HRG	۲	150.0 Kgr	0 1/16 mm		
	•	HB30	۲	187.5 Kgf	0.2.5 mm		/
	•	Kg/mm ²	۲	187.5 Kgf	02.5 mm		
		icer				Confirmer	

Fig. 9.15: Sélection de l'échelle

Appuyer sur **CONFIRMER** pour sélectionner l'échelle ou **SUPPRIMER** pour annuler.

Pour le paramétrage de conversion, chaque fois que la touche est appuyée, l'échelle de conversion et la valeur convertie, sont affichées après chaque essai près de l'échelle principale.

Le paramétrage de correction est utilisé pour introduire la correction automatique lors des essais sur échantillons ronds.

Entrer le diamètre de l'échantillon en mm ou en pouces, en fonction de l'unité de mesure affichée. Selon la table de correction Rockwell, la correction appropriée sera appliquée. Une icône représentant le diamètre introduit montre la correction.

Une fois les paramètres souhaités ont été saisis, l'écran suivant apparaît avec les paramètres définis:

Fig. 9.16: Paramètres définis

Appuyer sur **CONFIRMER** pour créer un fichier. Un écran avec la liste des fichiers est affiché. Le dernier fichier créé est situé en haut de la liste.

Appuyer sur ANNULER, la liste des fichiers sans le dernier fichier créé est affiché.

9.3.4 MODIFIER UN FICHIER

Depuis l'écran d'accueil, appuyer sur **PARAMETRES FICHIERS** pour afficher les fichiers disponibles.

TES	T-HRC							
150.0	Kgf		C	iamant R	10 - Nov - 2011			
HRC			40.0 45.0 55.0 60.0					16:58:42
Fichier a	rchive							ESC
	•	X	TEST	HRC				
1	•	X	TEST	-HB30				
	•	X	TEST-	HRB				
	Nouvea Fichier	,		Edition Fichier		Archive Essais	R	Recherche Fichier

Fig. 9.17: Liste des fichiers

Toucher le fichier à modifier. Ensuite, appuyer sur **MODIFIER LE FICHIER** et l'écran suivant apparaît avec les paramétrages fichier:

ТЕST-НВ30 187.5 Kgf		Bille 2	2,5 mm	10 - No	10 - Nov - 2011	
HB30					17:02:03	
Paramé	tres fichiers				ESC	
	Nom fichier		TEST-	НВ30		
	Type fichier		2-D			
/		Н	B30			
	Correction	Ø	mm			
	N° séquence		1			
	Effacer			Confirme		

Fig. 9.18: Paramètres fichiers

Chaque champ peut être modifié selon les procédures décrites dans le chapitre **9.3.3 Nouveau Fichier**. Lorsque toutes les modifications ont été apportées, appuyer sur **Valider** pour enregistrer les modifications et revenir à la liste des fichiers.

Appuyer sur **SUPPRIMER** pour quitter sans sauvegarder.

Remarques - Si le nom du fichier est modifié, non seulement les paramètres seront modifiées, mais un nouveau fichier "vide" aura été créé.

9.3.5 TRAITEMENT DES FICHIERS

Depuis l'écran d'accueil, sélectionner Paramètres Fichiers pour afficher la liste des fichiers disponibles.

Fig. 9.19: Liste des fichiers

Toucher les fichiers à traiter, puis appuyer sur Archive Essais pour afficher les tests stockés.

TES	T-HRC						
150.0	Kgf	Di	amant RO	10 - Nov	/ - 2011		
HRC		40.0	45.0	55.0	60.0	1	7:02:25
Archive	essais						ESC
	00029	09/11/11	1 16:16:10	61.5	HRC	TOL. HH	
	• 00028	09/11/11	1 16:15:48	61.5	HRC	TOL. HH	
	• 00027	09/11/11	1 16:15:02	59.9	HRC	TOL. H	
/	• 00026	09/11/11	1 16:13:06	99.9	HRC	TOL. HH	
	• 00025	09/11/11	1 16:12:08	99.9	HRC	TOL. HH	
	• 00024	09/11/11	1 16:09:44	57.9	HRC	TOL. H	
	• 00023	09/11/11	1 16:09:42	57.9	HRC	TOL. H	
	• 00022	09/11/11	1 16:09:20	70.9	HRC	TOL. HH	
E	Exporter Sélection		nprimer élection	Vis Sta	sualiser itistique	E Sé	ffacer lection

Fig. 9.20: Liste des essais réalisés

Appuyer sur < > pour afficher la liste complète. Le nombre dans la deuxième colonne est le numéro de séquence de test.

Dans la troisième colonne, la date et l'heure des essais sont précisées.

Dans la quatrième et la cinquième colonne, le résultat de dureté et l'échelle de dureté sont affichés. Dans la sixième colonne la limite de tolérance est donnée.

Sélectionner les tests à imprimer, exporter ou supprimer, en touchant simplement un seul test ou le premier et le dernier test de la séquence désirée.

Un ou plusieurs tests peuvent être désélectionnés en cliquant à nouveau dessus.

Remarque - si aucune sélection n'est faite, le programme traitera tous les essais stockés dans le fichier.

Dans la vue suivante, un écran des essais sélectionnés est illustré:

TES	T-HRC	CARLES MA					
150.0	Kgf	Di	amant RO	10 - Nov	- 2011		
HRC		40.0	45.0	55.0	60.0	1	7:02:36
Archive	essais						ESC
	00029	09/11/1	1 16:16:10	61.5	HRC	TOL. HH	
	00028	09/11/1	1 16:15:48	61.5	HRC	TOL. HH	
	00027	09/11/1	1 16:15:02	59.9	HRC	TOL. H	
/	00026	09/11/1	1 16:13:06	99.9	HRC	TOL. HH	
	00025	09/11/1	1 16:12:08	99.9	HRC	TOL. HH	/
	• 00024	09/11/1	1 16:09:44	57.9	HRC	TOL. H	
	• 00023	09/11/1	1 16:09:42	57.9	HRC	TOL. H	
	• 00022	09/11/1	1 16:09:20	70.9	HRC	TOL. HH	
E	Exporter Sélection		nprimer élection	Vis Sta	sualiser atistique	E Sé	ffacer lection

Fig. 9.21: Essais sélectionnés

Appuyer sur **Echap** pour revenir à la liste de fichiers.

9.3.5.1 EXPORTER LES RESULTATS

Après avoir sélectionné les essais désirés, insérer la clé USB dans le port approprié à l'arrière du boîtier électronique. Le port adéquat est celui situé en bas, appelé CLÉ.

La LED sur le panneau arrière se met à clignoter pendant un certain temps, puis reste allumée.

Appuyer sur **EXPORTER SELECTION** pour générer un fichier .TXT des tests sélectionnés et pour les transférer sur la clé USB.

La LED sur le panneau arrière se met à clignoter pendant un certain temps, puis reste allumé. À ce stade, il suffit de débrancher la clé USB.

Ci-dessous une impression de fichiers exportés sur un autre ordinateur et ouvertes avec Excel.

File name Description Field 1 Field 2	TEST-HRC					Information du fichier: nom type, description 1,2,3,4 and 5
Field 3 Field 4 Field 5						Informations sur la méthode d'essai: échelles, charge, pénétrateur et limite de tolérance.
Program	Scale HRC	Load Kp 150	Indenter CONE DIAMOND			
Tolerances	L 45	LL 55	H 60	HH 65		Statistiques de base: nombre des échantillons, dureté minimale, dureté maximale, gamme et
N 5	Min 24,6	Max 53,3	Range 28,7	Average 39,8		moyenne
LL 40 2 Var	L 60 3 Std Dev	OK 0 0 Var Coeff	н 0 Ср	HH O O Cpk	%	Répartition des résultats: pourcentage et nombre de tests visés à différentes limites de tolérance différents
156,27 195,34	12,5 13,98	31,42 35,13	0,07 0,06	-0,41 -0,36	N N-1	Statistiques avancées sur essais N et N-1: variation, écart type, coefficient de variation,
-3 Sigma 2.28	+3 Sigma 77.28		Z min -1.22	Z max	N	Cp, Cpk, -3 sigma sigma 3, Z min et Z max
-2,15	81,71		-1,09	1,45	N-1	
SEQ NO 36 32 31 30 9	DATE 20/09/10 07:48 20/09/10 07:48 20/09/10 07:48 20/09/10 07:48 17/09/10 16:09	HARDNESS 53,3 24,6 45,3 50,7 25	UNIT HRC HRC HRC HRC HRC	TOLERANCE TOL L TOL LL TOL L TOL L TOL LL		Information sur l'essai seul: numéro de séquence, date et heure, dureté mesurées, échelles et limite de tolérance

Fig. 9.22: Impression des fichiers exportés

Remarque - les formules utilisées pour les statistiques sont expliquées dans le chapitre Statistiques.

9.3.5.2 IMPRIMER SELECTION

Après avoir sélectionné les résultats souhaités comme décrit au chapitre 9.3.5, connecter une imprimante par le port approprié à l'arrière du boîtier électronique. Le port correct est la USB supérieure, appelée **PRINT**. Appuyez sur la touche **IMPRIMER** pour imprimer un rapport des essais sélectionnés. La LED sur le panneau arrière se met à clignoter pendant un certain temps, puis va rester allumée et le rapport va être imprimé. Ci-dessous un exemple d'impression:

Remarque – le programme reconnaîtra automatiquement l'imprimante si celle-ci emploie le langage PCL 5.

File name Description	TEST-HRC			Information du fichier: nom, type, description 1,2,3,4 et 5		
Field 2 Field 3 Field 4 Field 5	(m) -		Tudaukau			Informations sur la méthode d'essai: échelle, charge, pénétrateur et limite de tolérance
Program	HRC	150	CONE DIAMOND			
Tolerances	L 45,0	LL 55,0	Н 60,0	НН 65,0		Statistiques de base: nombre des échantillons, dureté minimale, dureté
N 4	Min 24,6	Max 53,3	Range 28,7	Average 43,5	e <	maximale, gamme et moyenne
LL 25,00 1 Var 127,06	L 75,00 3 Std Dev 11,27	OK 0,00 0 Var Coeff 25,93	H 0,00 0 Cp 0,07	НН 0,00 0 Срк -0,34	* N	Répartition des résultats: pourcentage et nombre de tests visés aux différents limites de tolérance
169,42	13,02	29,94	0,06	-0,30	N-1	
-3 Sigma 9,66 4,43	+3 Sigma 77,29 82,52		Z min -1,02 -0,89	Z max 1,47 1,27	N N-1	Statistiques sur essai N et N-1: variation, déviation, coefficient de variation Cn Cnk -3 sigma sigma 3 Z
SEQ NO	DATE	HARDNESS	UNIT	TOLERA	NCE	min et Z max
00036 00032 00031	20/09/10 07:48 20/09/10 07:48 20/09/10 07:48	53,3 24,6 45,3	HRC HRC HRC	TOL L TOL LL TOL L	· · · · ·	
60030 Fig 9 23. Ιι	20/09/10 07:48	50,7	HRC	TOL L		Information sur l'essai seul: numéro de séquence, date et heure, dureté mesurées, échelles et limite de
rig. <i>7.2</i> 3. ii	inpression a un	Tapport				tolérance

Remarque – les formules employées pour le calcul des statistiques sont expliquées dans le chapitre Statistiques.

9.3.5.3 AFFICHAGE DU CALCUL STATISTIQUE

Après avoir sélectionné les essais comme décrit au chapitre 9.3.5, appuyer sur **VOIR STATISTIQUE** pour afficher l'écran avec le calcul. Un écran comme celui là ci-dessous apparaît:

TEST-	TEST-HRC								
150.0 Kg	ıf	C)iamant R	OCKWEL	.L	10 - N	ov - 2011		
HRC 40.0 45.0			45.0	55.0	60.0	17:02:49			
Statistiques						Cherry States	ESC		
	Statistique	es de base			Distri	bution			
	Echantillon	5		% Tol. LL	0.00	Tol. LL	0		
	Valeur min	59.9		% Tol. L	0.00	Tol. L	0		
	Valeur max	99.9		% Tol. OK	0.00	Tol. OK	0		
	Etendue	40.0		% Tol. H	20.00	Tol. H	1		
	Moyenne	76.6		% Tol. HH	80.00	Tol. HH	4		
	Echanti	illon (N)		Echantillon (N-1)					
Variation	364.13	-3 Sigma	19.32	Variation	455.17	-3 Sigma	12.56		
Var. Std	19.08	+3 Sigma	133.81	Var. Std	21.33	+3 Sigma	140.57		
Coéf. Var.	24.92			Coéf. Var.	27.87				
Ср	0.09	Zmin	1.65	Ср	0.08	Z min	1.48		
Cpk	-0.38	Zmax	-1.13	Cpk	-0.34	Zmax	-1.01		

Fig. 9.24: Écran Statistiques

Pour revenir à la liste des tests, appuyer sur Echap.

1° **carré**: nombre d'échantillons (total nombre de tests x_i dans le fichier actif) Dureté minimale x_{MIN} Dureté maximale x_{MAX} Plage de variation $x_{MAX} - x_{MIN}$ Moyenne $\overline{x} = \frac{\sum x_i}{N}$

2° carré: pourcentage et nombre de essais dans les limites de cinq tolérance (LL, L, H, HH)

3° square:	sur N échantillons:	variation	$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{N}$
		Écarte type	σ
		-3 Sigma	$\overline{x} - 3 \cdot \sigma$
		+3 Sigma	\overline{x} + 3 · σ
		Coefficient de variation	$\frac{\sigma}{\overline{x}} \cdot 100$
		Ср	$\frac{H-L}{6 \cdot \sigma}$
		Cpk	$\min(\frac{H-\bar{x}}{3\cdot\sigma}; \frac{\bar{x}-L}{3\cdot\sigma})$
		ZCalcMin	$\frac{\overline{x}-L}{\sigma}$
		ZCalcMax	$\frac{H-x}{\sigma}$

sur N-1 échantillons:	variation (N-1)	$\sigma_{N-1}^2 = \frac{\sum (x_i - \bar{x})^2}{N - 1}$
	Écart type (N-1)	$\sigma_{\scriptscriptstyle N-1}$
	-3 Sigma (N-1)	$\overline{x} - 3 \cdot \sigma_{N-1}$
	+3 Sigma (N-1)	$\overline{x} + 3 \cdot \sigma_{N-1}$
	Coefficient de variation (N-1)	$\frac{\sigma_{_{N-1}}}{\overline{x}} \cdot 100$
	Cp (N-1)	$\frac{H-L}{6 \cdot \sigma_{_{N-1}}}$
	Cpk (N-1)	$\min(\frac{H-\bar{x}}{3\cdot\sigma_{N-1}};\frac{\bar{x}-L}{3\cdot\sigma_{N-1}})$
	ZCalcMin (N-1)	$\frac{\overline{x}-L}{\sigma_{_{N-1}}}$
	ZCalcMax (N-1)	$\frac{H-\overline{x}}{\sigma_{_{N-1}}}$
	sur N-1 échantillons:	sur N-1 échantillons: variation (N-1) Écart type (N-1) -3 Sigma (N-1) +3 Sigma (N-1) Coefficient de variation (N-1) Cp (N-1) Cpk (N-1) ZCalcMin (N-1)

Remarque – Ces formules sont employées aussi pour calculer les statistiques du fichier. TXT et pour l'exportation et l'impression.

9.4 PARAMETRES INSTRUMENT

Cette fonction permet le réglage des paramètres d'essai et des caractéristiques de base du duromètre. Depuis l'écran d'accueil, sélectionner **Paramètres Instrument** pour afficher le menu correspondant.

Fig. 9.25: Menu paramètres instrument

Pour revenir à l'écran d'accueil, appuyer sur Echap qu'une modification est été apportée ou pas.

9.4.1 ACTIVER ET DEFINIR LE TEMPS DE CHARGE

Depuis l'écran **PARAMETRES INSTRUMENT**, appuyer sur **VOIR TEMPS DE CHARGE** pour afficher le compte à rebours du temps de charge. Le bouton devient bleu lorsqu'il est actif. Pour désactiver cette fonction, appuyez à nouveau **VOIR TEMPS DE CHARGE.** Le bouton devient gris.

Le temps de charge peut être fixé en option. Appuyer sur la touche grise à droite pour afficher le clavier numérique:

Fig. 9.26: Clavier numérique

Entrer la valeur désirée et appuyer sur pour confirmer

La vue d'écran ci-dessous illustre, un exemple de compte à rebours:

Fig. 9.27: Compte a rebours du temps de charge

9.4.2 SÉPARATEUR DÉCIMALE

Appuyer sur **SEPARATEUR DECIMALE** pour définir le point décimal. Le bouton devient bleu lorsqu'il est actif et une icône représentant " apparaît. Cette fonction permet d'afficher tous les résultats avec le point décimal en facilitant l'interprétation des résultats des essais par les logiciels de traitement, comme Excel.

9.4.3 ACTIVER LA FONCTION EPAISSEUR MINIMALE MESURABLE

Depuis l'écran **PARAMETRES INSTRUMENT**, appuyez sur **VOIR EPAISSEUR MINIMALE MESURABLE** pour afficher cette valeur. Le bouton devient bleu lorsque la fonction est active. L'épaisseur minimale mesurable peut être donnée en mm ou en pouces; appuyer sur MM ou IN (pouces) pour basculer entre les deux unités de mesure.

Appuyer de nouveau VOIR EPAISSEUR MINIMALE MESURABLE pour désactiver cette fonction.

Remarque –l'unité de mesure (mm / pouces) sera utilisée aussi pour définir l'unité de mesure pour le diamètre dans la fonction Facteur De Correction Rondes (chapitre 9.3.3 "Création d'un fichier").

Dans les deux cas, l'écran apparaîtra comme suit:

Fig. 9.28: Paramètres instrument: épaisseur minimale mesurable (mm)

TES	T-HRC						
150.0	Kgf	D	iamant R	OCKWEI	-L	10 - Nov	- 2011
HRC		40.0	45.0	55.0	60.0	17	7:05:06
Paramét	tres instrun	nent					ESC
		Visualiser Temps charge	Seco	nde	3	3	
	•	Séparateur Décimale	Calib	ration	0.	0	
		Visualiser Epaisseur mini			Pouce		
	0	1			2	0	

Fig. 9.29: Paramètres instrument: épaisseur minimale mesurable (pouces)

Après avoir activé la fonction ÉPAISSEUR MINIMALE MESURABLE et après avoir fait un essai, l'écran affiche l'épaisseur comme illustré par les vues suivantes:

Fig. 9.30: Épaisseur minimale mesurable pouces/mm

TEST-HRC				1		
150.0 Kgf	Di	lamant R	OCKWEL	L	10 -	Nov - 2011
HRC	40.0	45.0	55.0	60.0		17:06:49
Menu principal						
Effacer	6	31	5			
Essa			J	HRC		
F	0.030	in				
Paramétros		ramétras	205			
Opérateur		lichiers	12	anametres		Parametres

Fig. 9.31: Épaisseur minimale mesurable pouces/mm

Remarque – l'épaisseur minimale mesurable dépend de la dureté du matériau à tester, donc cette information sera disponible seulement après avoir fait un test.

Remarque – l'appareil donne une indication de l'épaisseur minimale mesurable, en multipliant la valeur de profondeur (telle que mesurée par la sonde) par 10.

Si une valeur plus précise est nécessaire, il faudra se référer au tableau des normes Rockwell.

9.4.4 INTRODUIRE UNE CALIBRATION

Depuis l'écran d'accueil, accéder à l'écran PARAMETRES INSTRUMENT

Fig. 9.32: Écran Paramètres Instrument

Grâce à cette fonction, un facteur de correction peut être introduit pour être ajoutés ou soustraite du résultat de dureté. Le facteur de correction travaille sur l'échelle de dureté. Pour chaque échelle, il est possible d'introduire un facteur de correction.

Pour définir la valeur d'étalonnage souhaitée, appuyer sur la touche grise à droite, le clavier numérique s'affiche:

1	150.0 Kgf Diamant ROCKWELL					10 - N	ov - 20'	11			
н	RC		40	0.0	45.0	55.0	6	0.0		16:59:0	07
										E	SC
	0	1	2	3	4	5	6	7	8	9	
				,		-	1	#			
				()]]			2	
	AB	C	SPACE				+	esc			

Fig. 9.33: clavier numérique

Entrer la valeur (précédé du signe « - « si elle est une valeur négative) et appuyer sur pour confirmer. La valeur entrée sera ajoutée ou soustrait à partir des mesures suivantes faites avec l'échelle de dureté utilisée lors de l'entrée de la valeur.

La remarque **ETALLONAGE ACTIVE** sur l'écran d'accueil, comme illustré par la vue suivante, indique la présence d'un étalonnage:

TEST-HRC					
150.0 Kgf		Diamant R	OCKWEI	LL	11 - Nov - 2011
HRC	40.0	45.0	55.0	60.0	09:47:15
Menu principal					
Effacer		61	E		
Essai		ΟΙ.	J	HRC	
		Calibrat			
Paramétres		Paramétres	0	Paramétres	Paramétres
Opérateur	02	Fichiers	The second	Instrument	Securite

Fig. 9.34: Écran d'accueil – Calibration active

9.4.5 RECONNAÎTRE LES MODULES PROFIBUS OPTIONNELS

Remarque – les modules PROFIBUS sont facultatifs, donc les paramètres sont actifs seulement si les modules appropriés ont été installé dans le boîtier électronique.

9.5 PARAMÈTRES SÉCURITÉ

Cette fonction permet de protéger l'accès à certaines fonctions.

Depuis l'écran d'accueil, appuyer sur la touche Paramètres Sécurité, l'accès est protégé par un mot de passe, comme illustré par la vue ci-dessous:

Fig. 9.35: Clavier alphabétique

Appuyer sur 123 #/(.) pour passer au pavé numérique, appuyer sur ABC pour passer à celui alphanumériques.

Entrer le mot de passe correct et appuyer sur pour confirmer. Le mot de passe par défaut est 1111; toutes les fonctions sont en libre accès.

9.5.1 FONCTIONS PROTEGES PAR MOT DE PASSE

Lorsque le mot de passe correct a été saisi, le menu suivant apparaît:

Fig. 9.36: Menu paramètres sécurité

Chaque fonction du programme peut être protégée par mot de passe. Pour sélectionner la fonction à protéger, il suffit de la cliquer.

Ensuite, appuyer sur ACTIVER LA PROTECTION.

Appuyer sur CONFIRMER pour revenir à l'écran d'accueil ou SUPPRIMER pour quitter sans sauvegarder.

Ci-dessous un exemple de fonction protégée par mot de passe

Fig. 9.37: Paramètres sécurité – Protection active

Dans ce cas, la fonction n'est accessible qu'après avoir saisi le mot de passe approprié.

9.5.2 CHANGER LE MOT DE PASSE

Le mot de passe est par défaut 1111. Pour le changer, appuyer sur la touche MOT DE PASSE. Le clavier s'affiche

pour saisir le nouveau mot de passe. Ensuite, appuyer sur pour confirmer le nouveau mot et revenir a l'écran **PARAMETRES DE SECURITE** ou appuyez sur SUPPR, si vous ne souhaitez pas enregistrer le nouveau mot de passe.

Remarque – En cas de perte du mot de passe, appeler le service technique de l'agent local ou notre service aprèsvente au numéro suivant:

Ph.: +39 0332.200.216 - Fax: +39 0332.202.623 - E-mail: uff-tec@cisamitaly.com

10 INSTALLATION / REPLACEMENT DU PENETRATEUR

Le pénétrateur est une composante fondamentale de l'essai de dureté pour assurer des résultats précis et fiables. Le choix ou le remplacement de pénétrateur doit être fait avec précaution. Le pénétrateur doit être choisi en fonction de l'échelle de dureté sélectionnée.

e penetrateur doit etre choisi en fonction de l'échene de durête selectionnée.

• Abaisser la vis enclume pour avoir assez d'espace sous le pénétrateur

Fig. 10.1: Serre-pièce, pénétrateur et buse du pénétrateur

• Tirer sur le serre-pièce pour l'enlever.

Fig. 10.2: Pénétrateur et buse du pénétrateur

• Desserrer la buse pour la retirer

Fig. 10.3: Pénétrateur

• Utiliser la broche fournie dans le coffret pour desserrer et enlever le pénétrateur.

Fig. 10.4: Pénétrateur et broches de démontage du pénétrateur

Fig. 10.5: Remontage du nouveau pénétrateur

- Remonter le pénétrateur
- Remonter la buse du pénétrateur et le serre-pièce
- S'assurer que l'échelle et la charge appropriées au pénétrateur installé ont été sélectionnées. Informations sur l'échelle de dureté, la charge et le pénétrateur sont affichées à l'écran ou sont consultable dans l'annexe (15.1 et 15.2) de ce manuel. Effectuer quelques tests, sans se préoccuper des résultats, pour permettre au pénétrateur de se "régler".

11 CHANGER LA CHARGE

La charge d'essai est réglée au niveau de la tête de mesure selon l'échelle utilisée et les tests à effectuer. La vue ci-dessous, présente les différents éléments permettant le choix de la charge à appliquer. Dans notre exemple, la charge initiale est de 125 kgf, le but est de sélectionner une charge de 150 kgf.

Fig. 11.1: Différents éléments permettant le choix de la charge

• Soulever la goupille de verrouillage à droite

Fig. 11.2: Goupille de blocage levé

• Tourner le volant sur la tête de mesure afin d'aligner la ligne rouge au milieu du trou indiquant la charge désirée. (Charge Brinell en rouge, trou de gauche, charge Rockwell en noir, trou de droite).

Fig. 11.3: Tourner le volant

Fig. 11.4: Plaque en acier avec la ligne rouge et l'indication de charge

Lorsque la ligne rouge se trouve dans le centre du trou, tourner le volant jusqu'à l'étiquette de la charge • souhaitée au niveau de la goupille.

(Charge Brinell en rouge, trou de gauche, charge Rockwell en noir, trou de droite).

Fig. 11.5: Goupille de verrouillage avec étiquette de charge

• Tirer la broche pour verrouiller la charge.

Fig. 11.6: Goupille de verrouillage vers bas

- Vérifier que la charge sélectionnée correspond à l'échelle et au pénétrateur utilisé. Les informations sur l'échelle, la charge et le pénétrateur sont affichées à l'écran. Elles sont également consultables à la table 15.1 et 15.2 de l'annexe de ce manuel.
- Effectuer quelques tests indépendamment du résultat pour permettre le "réglage" de la mécanique.

12 ENTRETIEN

12.1 ENTRETIEN COURANT

Le duromètre ERNST AT250 ne nécessite aucun entretien particulier, mais les étapes suivantes doivent être respectées afin de préserver le bon fonctionnement de l'appareil :

- Utiliser un chiffon doux humide pour nettoyer périodiquement la surface extérieure de l'appareil.

- Pour nettoyer l'écran, utiliser des produits spécifiques.

- L'utilisation d'air comprimé n'est pas conseillée, car il peut soulever la poussière et endommager l'appareil.

- Vérifier régulièrement l'exactitude et la répétabilité du duromètre en utilisant des étalons certifiés.
- Vérifier régulièrement la charge d'essai en utilisant des cellules de charge certifiées.

12.2 ENTRETIEN PÉRIODIQUE

12.2.1 CONTROLER LA POSITION DE LA SONDE

La position de la sonde doit être vérifiée dès que le duromètre ne donne pas des résultats fiables et que l'opérateur a vérifié le bon état du pénétrateur.

Pour vérifier la position de la sonde, sélectionner la charge 150 kgf et installer le pénétrateur diamant Rockwell.

- Depuis l'écran d'accueil, appuyer sur **PARAMETRES SECURITE**
- Saisir le mot de passe: ERNST
- L'écran suivant apparaît. Le nombre dans le centre de l'écran indique la position virtuelle de la sonde, selon le calcul effectué par l'appareil après l'étalonnage. Le nombre dans la partie inférieure gauche de l'écran affiche la position réelle de la sonde. L'opérateur doit tenir compte de cette valeur lors de l'exécution des prochaines étapes.

Fig. 12.1: Sonde en position de repos

- Enlever le serre-pièce
- Placer l'étalon Rockwell 60 HRC sur la vis enclume

Fig. 12.2: Étalon sur la vis enclume

• Serrer la vis jusqu'à ce que la buse du pénétrateur entre en contact avec l'étalon d'essai (position de précharge)

Fig. 12.3: Buse de pénétrateur en contact avec l'étalon

• Vérifier que le numéro à droit de l'icône du calibre indique environ 16 000 (+ / -1000).

CALIBRATION					
0.0 Kgf					10 - Nov - 2011
μm	45.00	55.00	60.00	65.00	17:09:12
Menu principal					
	Contraction of the				
	5	4 .	57	μm	

Fig. 12.4: Sonde en position de précharge

- Si la position de la sonde est correcte, redémarrer l'appareil pour restaurer le mode de fonctionnement standard.
- Si la position du transducteur n'est pas correcte, appeler le service après-vente.

13 GUIDE DE DÉPANNAGE

Les informations dans cette section permettent à l'opérateur de résoudre les éventuels problèmes de dysfonctionnement de l'appareil. Pour plus de détails ou des problèmes persistants, prendre contact avec le service technique de l'agent local ou avec notre service après vente:

Ph.: +39 0332.200.216 - Fax: +39 0332.202.623 - E-mail: uff-tec@cisamitaly.com

Problème	oblème Cause	
Le duromètre ne s'allume pas	Panne de courant	Vérifiez que l'interrupteur
		principal sur le côté arrière de
		l'appareil est allumé.
		Vérifiez que le cordon
		d'alimentation est branché
		correctement et redémarrez le
		système.
		Être sûr qu'il n'y a pas de fusible
		interrompu. En ce cas,
		remplacez les fusibles et
		redémarrer le système.
		Vérifiez que l'appareil est
		correctement connecté et
		alimenté.
		Soyez sûr que la tension de la
		ligne correspond à celle sur
		l'étiquette du duromêtre CE.
Long de longement de nue monte	La câbla da méchanas est	Dranch ar la compostava de
Lors du fancement du programme,	Le cable de precharge est	Branchez le connecteur de
ricone « TEST » apparait	debranche	precharge et redemartez le
		systeme.
	L'onto-commutateur de précharge	Appelez notre service après-vente
	est en panne ou hors de position	represe notice service upres vente.
Pendant l'essai l'icône " OK "	Le câble de précharge est	Branchez le connecteur de
reste affichée.	débranché	précharge et redémarrez le
		système.
		5
	L'opto-commutateur de précharge	
	est en panne ou hors de position	Appelez notre service après-vente
A la fin de l'essai, aucun résultat	L'échantillon est trop loin du	Apportez le serre-pièce à proximité
n'est affiché	pénétrateur.	de l'échantillon. Si le serre-pièce
		n'est pas employée, mettre la
		pointe du pénétrateur environ à
		1mm de l'échantillon.
	La sonde est décalée.	Vérifiez la position de la sonde
		(chap. 12.2.1).
Le testeur donne des résultats peu	Pénétrateur ou charge inappropriés	Vérifiez le pénétrateur et si
fiables	à l'essai en usage	nécessaire remplacez-le.
	La sufface d'essai n'est pas	soyez sur que le penetrateur et la
	preparee de mamere appropriée	en usage (chap. 10 e 11)
		on usage (onap. 10 e 11).
	Présence d'une calibration	Sovez sûr que la surface d'essai a
	utilisateur	été préparée selon les normes
		ere propulse selon les hornies

	Le transducteur est hors de position	Vérifiez que la calibration effectuée par l'opérateur est correct
		Vérifiez la position du transducteur (chap. 12.2.1).
Aucune des fonctions du programme ne peuvent être exploités	Les fonctions sont protégées par mot de passe	Entrez le mot de passe correct pour utiliser les fonctions protégées ou désactiver la protection.
La fonction PARAMETRES DE SÉCURITÉ ne peut pas être exploitée.	Le mot de passe a été perdu	Appelez notre service après-vente
Les données ne peuvent pas être exportées sur la clé USB	Mauvaise procédure	Répétez la procédure pour exporter les données
	La clé USB n'est pas connectée correctement	Soyez sûr que la clé USB est connectée au port inférieur appelé "KEY".
	La clé USB est casée ou pas compatible.	Tentez d'utiliser la clé USB sur un autre PC et en cas remplacez-la par une autre
Impossible d'imprimer	Mauvaise procédure	Répétez la procédure pour imprimer
	L'imprimante n'est pas alimentée	Branchez l'alimentation à l'imprimante
	Le câble USB n'est pas connecté correctement	Soyez sur que le câble de l'imprimante est connecté au port supérieur appelé "PRINT".
	L'imprimante est cassé ou pas compatible	Tentez d'utiliser l'imprimante sur un autre PC et en cas remplacez-la par une autre

14 EMBALLAGE ET TRANSPORT DU DUROMETRE

Avant d'expédier l'appareil, appeler le service technique de votre agent local ou notre service après-vente aux numéros de téléphone suivants:

ph.: +39 0332.200.216 fax: +39 0332.202.623 e-mail: <u>info@cisamitaly.com</u>

Selon la nature du problème, nos techniciens seront vous orienter de façon efficace.

Si une partie de l'instrument doit être retournée, les instructions nécessaires pour démonter et emballer l'élément concerné seront transmises.

Si toute l'unité doit être retournée, suivre ces étapes :

Les procédures décrites dans cette section doivent être réalisées avec un soin extrême et en utilisant des dispositifs de levage appropriés à la manutention de l'instrument (environ 250 kg):

- Inclure une description du problème dans l'envoi
- Débrancher le câble d'alimentation
- Retirer et emballer soigneusement la tête de mesure
- Retirer le bâti support, en prenant soin de ne pas endommager la vis enclume (il vaut mieux retirer la vis avant de retirer le bâti)
- Placer l'appareil sur une palette pour le déplacer facilement avec un chariot élévateur ou un appareil de levage
- Emballer l'appareil soigneusement avec du matériel d'emballage adéquat
- Fixer le testeur à la palette avec un cordon d'emballage adapté

Remarque – Si l'emballage d'origine a été conservé, l'utiliser. Prendre soin de marquer le paquet avec poids et orientation pour manipulation. Envoyer l'appareil à :

Service technique de l'agent local

ou

C.I.S.A.M. sas VIA MONTE TAGLIAFERRO 6 I-21056 INDUNO OLONA, VA ITALY

15 ANNEXE

15.1 UTILISATION DES ACCESSOIRES

15.1.1 ANNEAU DE VERROUILLAGE DE LA VIS ENCLUME

Ce composant maintient la vis d'enclume verrouillée, de sorte qu'il n'y ait pas besoin d'effectuer des réglages lorsque des échantillons d'hauteurs identiques sont testés.

Fig. 15.1: Anneau de verrouillage de la vis enclume

Pour installer l'anneau de verrouillage, retirer l'enclume et le soufflet en caoutchouc de la vis, puis installer l'anneau, ajuster la hauteur de l'enclume et serrer la vis de fixation.

Fig. 15.2: Anneau de verrouillage monté

Réinstaller le soufflet en caoutchouc et l'enclume.

15.1.2 OUTIL DE DÉMONTAGE VIS ENCLUME

Utiliser cet outil pour desserrer le système du support de la vis enclume.

Fig. 15.3-15.3.b: Outil de démontage vis enclume

Après desserrage du système de verrouillage, la vis et la protection du support bâti peuvent être retirées, augmentant ainsi l'espace utile sous le pénétrateur.

Fig. 15.4: Base du bâti sans vis enclume et support du bâti

15.1.3 Adaptateur enclume

Lorsque d'une utilisation de l'instrument sans la vis enclume et sans la base du bâti, ou lors de l'utilisation d'un bâti modèle CAR, l'emploi de l'adaptateur enclume rend le positionnement de l'échantillon plus facile.

Fig. 15.5: Adaptateur enclume

Placer l'adaptateur dans l'alésage, puis placer l'enclume sur l'adaptateur.

Fig. 15.6-15.6.b: Utilisation de l'adaptateur pour enclume

Dans la vue ci-dessous, un exemple de l'emploi de l'adaptateur enclume lors d'essai sur échantillons cylindriques.

Fig. 15.7: Exemple d'essai sans vis, avec enclume

15.2 ROCKWELL TEST METHODE

Les différents phases de l'essai Rockwell analysées ci-dessous, seront numérotées pour une meilleure compréhension et reportées dans le schéma (fig. 1). On peut voir également le comparateur qui montre le déplacement du pénétrateur après une forte amplification.

Fig. 15.8: Rockwell test méthode

- 1. La pièce à contrôler est apportée en contact du pénétrateur sur lequel est appliquée une charge Fo (précharge) provoquant une petite empreinte. On fait alors la mise à zéro du comparateur.
- 2. On applique graduellement et sans choc une charge complémentaire F1 qui additionnée à la précharge détermine la charge totale appelée charge d'essai F. Le pénétrateur soumis à cette charge pénétrera plus ou moins profondément dans le matériau en fonction de sa dureté. On laissera agir la charge afin d'obtenir la profondeur maximale. Pour les matériaux durs la pénétration est presque instantanée tandis que pour les matériaux tendres, il faudra attendre quelques secondes.

Le mouvement sera visualisé sur le comparateur.

3. On retire ensuite la charge complémentaire F1 et l'on retourne à la phase de précharge obligeant ainsi le pénétrateur à rester dans l'empreinte tout en éliminant toutes les déformations élastiques provoquées par la charge totale. En conséquence, le comparateur mesurera la différence de profondeur entre la précharge et la charge en indiquant la dureté.

Les pénétrateurs, les précharges, les charges et les unités de mesure de l'essai Rockwell sont standardisés en deux catégories : Rockwell et Rockwell Superficiel.

Remarque – Selon les normes DIN en vigueur les précharges et les charges des différents essais Rockwell, Brinell et Vickers doivent être exprimées uniquement en N (Newton). Toutefois, pour des raisons de rationalité, nous préférons utiliser les expressions originelles en kp (kilogrammes/force).

Rockwell standard

L'essai Rockwell prévoit un seul pénétrateur en diamant de forme conique ayant un angle de 120° et rayon de 0.2 mm à la pointe (fig. 2) et divers pénétrateurs à bille dont le diamètre est toujours exprimé en pouces : 1/16" 1/8" $\frac{1}{4}$ " $\frac{1}{2}$ ".

Fig. 15.9: Forme du pénétrateur diamant Rockwell

La précharge est constante et égale à 10 kp (98.1 N).

Les charges d'essai (précharge + charge complémentaire) sont de 60-100-150 kp (588.4, 980.7, 1471 N).

L'unité de mesure Rockwell correspond à une profondeur de 0.002 mm.

Comme la valeur lue augmente avec la dureté et que la différence de pénétration entre la précharge diminue, la valeur de la dureté Rockwell est obtenue en soustrayant de 1000 (pour le pénétrateur diamant) ou de 130 (pour les pénétrateurs bille) la différence de pénétration exprimée en unité de 0.002 mm.

Exemple

Avec le pénétrateur diamant nous avons obtenu une différence de pénétration de 0.082 mm. La valeur de dureté sera de 100- (82:2)= 59 Rockwell.

Avec la même différence de pénétration, mais avec un pénétrateur à bille la valeur de la dureté sera égale à 130 - (82. :2) = Rockwell.

Avec un appareil à lecture analogique le déplacement du pénétrateur est lu sur un comparateur dont le cadran est divisé en 100 parties égales de telle sorte qu'un tour complet corresponde à 0.2 mm. Deux séries de chiffres y sont gravées. La lecture se fera sur les chiffres noirs avec le pénétrateur diamant et sur les rouges avec les pénétrateurs bille ; la mise à zéro se fera sur le zéro noir (I30 rouge).

Avec un appareil digital la lecture se fait directement sur le display à la fin du cycle de mesure.

La combinaison des différents pénétrateurs avec les différentes charges permet d'obtenir une gamme importante d'échelles différenciées l'une de l'autre par une lettre, comme indiqué dans le tableau 15.1.

Charge d'essai kp			HR elle HR		
150	С	G	K	Р	V
100	D	В	E	М	S
60	А	F	Н	L	R
Indenter	Diamant	1/16" 1/16"	1/8" 1/8"	1/4" 1/4"	1/2" 1/2"
Nombres	Black	Rouge			

 Tab. 15.1: échelles Rockwell standard

Exemple

Si l'on utilise le pénétrateur diamant et la charge de 150 kp, l'essai sera référencé HRC. Le « H » est symbole de la dureté dans le sens général, le « R » le symbole de l'essai Rockwell et le « C » l'échelle spécifique. La valeur de la dureté précède toujours le sigle.

Exemple: 60 HRC

Essai Rockwell superficiel (ou Super-Rockwell)

L'essai Rockwell Superficiel utilise les mêmes pénétrateurs que l'essai Rockwell. Même si le pénétrateur diamant est identique, il doit être exécuté avec plus de précision tant sur la partie conique à 120° que sur le rayon de 0.2 mm, car les faibles charges utilisées ne causant qu'une petite empreinte, la moindre imperfection pourrait fausser le résultat.

La précharge est constante et égale à 3 kp (29,43 N). Les charges d'essai (précharge + charge complémentaire) sont de 15-30-45 kp (147.1, 294.2, 441.3 N).

L'unité de mesure Super-Rockwell correspond à une pénétration de 0.001 mm.

Contrairement à l'essai Rockwell, la mise à zéro lors de l'essai Rockwell Superficiel est faite toujours sur le nombre 100 (0 du comparateur), que l'on emploie un pénétrateur diamant ou un pénétrateur bille.

Le cadran du comparateur est divisé en 100 parties égales et ne possède qu'une seule série de graduation. Un tour complet du cadran correspond à 0.1 mm.

Exemple

Si la différence de pénétration est égale à 0.082 mm la dureté sera de 100-82 = 18 Rockwell Superficiels, que l'on utilise un pénétrateur diamant ou bille.

Les différentes échelles Rockwell Superficiels repérées par un nombre et une lettre (voir tableau 15.2) sont obtenues par la combinaison des différentes charges avec les différents pénétrateurs.

Charge d'essai kp			HR elle HR		
45 30 15	45N 30N 15N	45T 30T 15T	45W 30W 15W	45X 30X 15X	45Y 30Y 15Y
Indenter	Diamant	1/16" 1/16"	1/8" 1/8"	bille 1/4"	1/2" 1/2"

Tab. 15.2:	échelles	Rockwell	superficiel
------------	----------	----------	-------------